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Summary

Leaf phosphorus (P) comprises four major fractions: inorganic phosphate (Pi), nucleic acids,

phospholipids, P-containing metabolites and a residual fraction. In this review paper, we

investigated whether allocation of P fractions varies among groups of terrestrial vascular plants,

and is indicative of a species’ strategy to use P efficiently. We found that as leaf total P

concentration increases, the Pi fraction increases the most, without a plateau, while other

fractions plateau. Variability of the concentrations of leaf P fractions is greatest among families >
species(family) > regions > plant life forms. The percentage of total P allocated to nucleic acid-P

(20–35%) and lipid-P (14–34%) varies less among families/species. High photosynthetic P-use

efficiency is associated with low concentrations of all P fractions, and preferential allocation of P

tometabolite-P andmesophyll cells. Sequential resorption of P from senescing leaves starts with

Pi, followedbymetabolite-P, and thenother organic P fractions.Allocation ofP to leaf P fractions

varies with season. Leaf phytate concentrations vary considerably among species, associated

with variation in photosynthesis anddefence. Plasticity of P allocation to its fractions is important

for acclimation to low soil P availability, and species-specific P allocation is needed for co-

occurrence with other species.

Introduction

Phosphorus (P) frequently limits plant productivity, and its
availability in soil determines species distribution in many
terrestrial ecosystems (Veneklaas et al., 2012; Zemunik
et al., 2015). Molecules that contain P are involved in many
metabolic processes (Bieleski, 1973). Based on their chemical
structure, leaf P compounds are broadly divided into four
chemical fractions: inorganic phosphate (Pi) and three organic P
(Po) fractions (small metabolites, nucleic acids and phospho-
lipids), as well as a residual fraction of uncharacterised
composition (Bieleski, 1973; Chapin III & Bieleski, 1982;
Veneklaas et al., 2012; Hidaka & Kitayama, 2013). The
metabolically active Pi fraction is located in the cytoplasm
within a narrow range of concentrations (Bieleski, 1968;
Mimura et al., 1996), and excess Pi is stored in the cell

vacuole as a buffer to regulate [Pi] in the cytoplasm
(Bieleski, 1968; Tachibana, 1987; Lee & Ratcliffe, 1993), or
in other membrane-surrounded structures and organelles
presently poorly characterised (Ryan et al., 2019). Small
metabolites represent low-molecular-weight P-esters, such as
sugar phosphates and nucleotides (e.g. ATP and NAD(P)H).
Inorganic P and small metabolites are sometimes reported
together as the ‘metabolic’ P pool, which is inappropriate as
only a fraction of the Pi is metabolically active (Bieleski, 1968;
Veneklaas et al., 2012). Nucleic acids are the major Po fraction
in leaves, of which up to 85% is RNA and the remainder is
DNA (Bieleski, 1968; Tachibana, 1987; Matzek & Vitou-
sek, 2009). Phospholipids are components of cellular mem-
branes including endoplasmic reticulum, plasmalemma, Golgi
apparatus and tonoplast, as well as membranes of the nucleus,
mitochondria and chloroplasts (Jouhet et al., 2004; Andersson
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et al., 2005). The endoplasmic reticulum accounts for > 60% of
phospholipid mass in a variety of cell types (Lagace &
Ridgway, 2013). The residual-P fraction comprises P com-
pounds that do not fall in any of the other four categories
(Kedrowski, 1983). It includes chemically recalcitrant com-
pounds that are not co-extracted with the above-mentioned
organic compounds and likely represent mainly phosphorylated
proteins. Variation in total leaf [P] among plant families and
species, functional types and environments reflects differences in
both the absolute concentrations of each P fraction and their
relative proportions (Chapin III & Bieleski, 1982; Hidaka &
Kitayama, 2011). However, we lack a conceptual framework to
predict the contribution of ecological and phylogenetic factors,
as well as their interaction, to the variability of total leaf P and
each P fraction.

Exploring the variation in leaf P fractions among habitats,
families, species and plant life forms is important to appreciate
the diversity among plants in approaches to use P efficiently.
General trends of leaf P fractions have been synthesised by
Veneklaas et al. (2012) with a focus on possibilities to improve P-
use efficiency in crops. Since then, the number of publications on
leaf P fractions in the ‘Web of Science’ database has increased to
84% (Supporting Information Fig. S1), and new research
avenues have been explored. As leaf P fractionation data from
different plant life forms (i.e. trees and herbaceous plants,
perennials and annuals), habitats, families and species are now
available, new analyses with a broader focus and application are
possible. For instance, information derived from coexisting
species in their natural habitat could be used to understand the
combinations of leaf P allocation that have been evolutionarily
viable. Whether and how plants can partition leaf P into the four
fractions to adjust physiological processes in response to P supply
may help us understand the competitive ability of species when
coexisting in their natural habitats and devise strategies towards
more sustainable crop genotypes. Moreover, the relationships
between leaf P fractions and leaf traits such as net photosynthetic
rate (An), leaf mass per area (LMA), P-resorption efficiency
(PRE, i.e. the percentage reduction in leaf P concentration in
mature green leaves during senescence; Killingbeck, 1996) and
photosynthetic P-use efficiency (PPUE, i.e. the rate of photo-
synthesis per unit leaf P) are poorly understood across habitats
and species. These are some of the key variables that plant
breeders might consider when aiming to improve the PUE of
crops for sustainable agriculture.

Our objectives were to analyse published data to (1) identify
correlations among the concentration of leaf P fractions, (2) assess
the importance of the environment (i.e. region and habitat), plant
life form and phylogeny (i.e. families and species) in determining
leaf P fraction allocation patterns (i.e. the proportion of total P
allocated to each fraction) and (3) explore associations between the
concentrations of leaf P fractions and other leaf traits (i.e.An, LMA,
PRE and PPUE) of terrestrial vascular plants. These analyses will
increase our understanding of how plants adjust their allocation of
total P to leaf P fractions and whether this is associated with other
leaf traits. Finally, we explore the potential for leaf P fraction
allocation traits to be used to improve PPUE in crops.

Materials and Methods

We compiled the literature on the concentrations of leaf P
fractions for a variety of terrestrial plant species (Table S1). We
considered studies presenting the concentrations of P fractions in
the form of Po and Pi, or Po fractions as P in metabolites, nucleic
acids, lipids and a residual fraction. Data were tabulated on
country or region, family, species, life form, types of leaves used to
measure P (i.e. mature or senesced), soil P status (i.e. deficient or
sufficient, based on leaf [P]) and types and concentrations
(mg P g�1 DW) of leaf P fractions measured (Tables S1, S2). Leaf
total [P] and its fractions were expressed on a leaf dry weight
(DW) basis in all studies. Soil [P] was not included, despite a wide
variation, as this was not measured consistently, and thus not
comparable across studies; it was used to compare P treatments
within a study. Leaves of annuals had been collected from plants
grown either in the field or in pots, with or without supplemen-
tary P (Table S1). Annuals were mostly crop species. Leaves of
perennials had been collected from field-grown plants, mostly in
their natural habitat, either from one field site or from several sites
with different soil [P] (Table S1). Complete data set can be
accessed through the doi: 10.26182/26rb-mv37.

When studying relationships among the concentrations of leaf P
fractions, species mean values from different studies for both
annuals and perennials were used (data sources are given in
Tables S1, S2). This approach allowed generation of generic
relationships among the concentrations of leaf P fractions without
restriction to growth forms, habitats, families or species. Out of the
linear and nonlinear models (logarithmic, polynomial and non-
rectangular hyperbola), the model with the highest coefficient of
determination (r2) and least error variance was selected as the best-
fitting model to explain the relationship between each pair of P
fractions. When comparing the concentrations of leaf P fractions
between annuals and perennials, data across P treatments (for
annuals) or sites (for perennials) were used (Table S2). Perennials
represented herbaceous perennials, shrubs, vines and trees from
East Asia, Australia andNewZealand, Europe andNorth America.
In a few instances, P fraction data were collected from plants grown
in both low-P (i.e. P-deficient) and high-P (i.e. P-sufficient) field
conditions (Table S2). Those data were used to compare the
variation in leaf P fractions as dependent on soil P availability.
Except for the comparison of P fractions in mature and senesced
leaves (Table S2), all analyses were based on P fractions in mature
green leaves. A regression analysis identified the best fit correlations
between the concentrations of leaf P fractions and the strength of
those correlations was determined using the coefficient of deter-
mination (r2) (Fig. 1). The effect of region, family, species within
each family and plant life form on the concentration of leaf P
fractions (mg P g�1 DW) and on the percentage of total leaf P (%)
allocated to each P fraction was tested using four-way analysis of
variance (ANOVA) and log-linear models, respectively. An
ANOVA was used to compare the concentration of leaf P fractions
among annual and perennial plant species (Fig. 2), perennial plant
families (Figs 3, 4), co-occurring species within the same family
(Fig. 5) and green and senescing leaves (Fig. 6). The variability of
leaf P concentrations and percentages of leaf P fractions among
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plant families was determined using coefficients of variance (CV).
All data were analysed using SAS software (SAS, 2003).

Relationships among leaf P fractions

The concentration of all leaf P fractions increases with increasing
leaf total [P] (Fig. S2). While the sum of the Po fractions reaches a
plateau at < 3 mg P g�1 DW, [Pi] continues to increase with
increasing leaf total [P]. The maximum values of Pi, metabolite,
lipid, nucleic acid and residual [P] are 16.5, 4.2, 2.05, 1.6 and
0.22 mg P g�1 DW, and the minimum values are 19 10�2,
89 10�5, 69 10�3, 1.39 10�2 and 6.79 10�3 mg P g�1 DW,
respectively. The correlations between lipid [P] and metabolite [P]
(polynomial; r2 = 0.92), lipid [P] and nucleic acid [P] (linear;
r2 = 0.87), and nucleic acid [P] and metabolite [P] (polynomial;
r2 = 0.84) are stronger than those between metabolite [P] and
[Pi] (r

2 = 0.81), lipid [P] and [Pi] (r
2 = 0.79), and nucleic acid [P]

and [Pi] (r2 = 0.73) (Fig. 1). Moreover, the relationships of
metabolite [P], lipid [P] and nucleic acid [P] with [Pi] were
nonrectangular hyperbolic.

The correlations of Pi with metabolite-P, lipid-P and nucleic
acid-P exhibit similar trends: with increasing Pi (or Pi +metabolite-
P), there is a steep increase in the other fractions until these reach a
plateau at which their concentration is mostly unaffected by [Pi].
This reflects the storage role of Pi when leaves are functioning at
high total [P] with ‘excess’ Pi stored in vacuoles and only slowly
released into the cytoplasm when required for cellular functions,
such as photosynthesis and respiration (Bieleski, 1968, 1973;

Mimura et al., 1990; Lee & Ratcliffe, 1993). This vacuolar Pi may
be asmuch as two-thirds of leaf total [P] (Bieleski, 1973; Sinclair&
Vadez, 2002). The [Pi] in the cytosol of P-sufficient plants is
commonly in the range of 5–10 mM (Bieleski, 1973). Therefore,
during P deficiency, growthmay be limited by the rate at which P is
transported across the tonoplast into the cytoplasm and then to
meristems.

The first-order polynomial correlations between metabolite [P]
and lipid [P] and nucleic acid [P] show a rapid increase in lipid [P]
and nucleic acid [P] initially which then stabilises as metabolite
[P] increases further. Moreover, the rate of increase in nucleic acid
[P] was greater than that in lipid [P]. This indicates that the
allocation of P to nucleic acids was evolutionarily favoured over
allocation to metabolite-P. There was also a linear correlation
between nucleic acid [P] and lipid [P]. Therefore, overall results
indicate that the nucleic acid [P] and lipid [P] fractions are themost
conserved among the leaf P fractions.

The effect of region, plant life form, family and species
on leaf P fractions

The four-way ANOVA showed that for the concentration of each
leaf P fraction and total P, ‘family’ explains the largest proportion of
the variability, followed by ‘species within family’, ‘region’ and
‘plant life form’, that is 30–66%, 6–15%, 1–20% and < 0.03%,
respectively (Table 1). As most of the families studied were not
present in all regions, an interaction between region9 family or
region9 species (family) could not be examined.
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Fig. 1 Correlations between leaf inorganic phosphate (Pi), small metabolites containing phosphorus (P), phospholipids (lipid-P) and nucleic acid-P
concentrations of species from numerous families. Data sources are given in Supporting Information Table S2. Each point represents a species mean value of a
study. Pearson’s correlation coefficient (r2) and number of paired observations (n) are given. All the relationships were significant at P < 0.05 in the regression
analysis. In some studies, Pi and metabolite-P concentrations were not separated, and these are presented in the panels at the far right. P-hyperaccumulating
outlier species,Ptilotus exaltatus ‘Joey’ (MullaMulla) andKennediaprostrataR.Br. fromYe et al. (2021),were not included.However, the four datapoints that
deviate from the rest in the first column are Hordeum leporinum Link and Hordeum vulgare L. from Chapin III & Bieleski (1982).
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Region

Looking at each of the factors included in ANOVA in turn, for
‘region’, we found that leaf total P, Pi and metabolite-P concen-
trations in plants from East Asia are higher than those in Australia
and New Zealand, Europe and North America (Table S3). Region
accounts for 19% of the variation of metabolite-P, but only 1% of
the variation of lipid-P. Therefore, region is an important factor,
but with contrasting explanation power for specific fractions.

Plant life form

For plant life form,we found that herbaceous perennials contain higher
concentrations of leaf P fractions and leaf total P than other perennial
plant life forms (i.e. shrubs, vines and trees) (Table S4). Moreover, it
seems that the concentrations of leaf P fractions in herbaceous

perennials are similar to those in annuals (Table S4). Both annuals and
herbaceous perennials contain 46–47% of their leaf P as Pi, while
shrubs and trees exhibit only 25–30% of leaf P as Pi (Table S4). In
summary, leaf P allocation of herbaceous perennials resembles those of
annuals, while shrubs and trees show a different pattern.

Additionally, we compared the P concentrations of annuals and
perennials (ferns, herbaceous perennials, shrubs, trees and vines
together). Annuals have higher leaf total [P] and P in their fractions
than perennials (Fig. 2a), but the proportion of P allocated to each
fraction (%) is similar; for example, nucleic acid-P represents the
largest Po fraction at 20� 3.2% of leaf total P and 33� 2.9% of
leaf Po, for both annuals and perennials (Fig. 2b). Despite growing
under fertile soil conditions and at a fast growth rate, mature leaves
of annuals maintain a similar proportional P allocation to that of
perennials. It is important to note that the leaf dry matter content
(DMC) of annuals is lower than that of perennials and in young
expanding leaves than mature leaves (Lambers & Poorter, 1992).
Therefore, the difference in P allocation between leaves of annuals
and perennials as affected by leaf DMC needs to be explored
further: DMC may explain why the differences disappear when
expressed as percentages, rather than as absolute amounts (Fig. 2).

For annuals and perennials grown under P-deficient and P-
sufficient conditions, annuals increase their [Pi] 14-fold and
metabolite [P] sixfold under P-sufficient conditions, much more
than the increase for perennials (fivefold and threefold, respectively;
Fig. 2c). Similarly, under P-sufficient conditions, annuals increase
lipid [P] and nucleic acid [P] 2.4- and 2.7-fold, while perennials
increase 2.1- and 1.8-fold, respectively. Thus, annuals reach a higher
[Pi] and [Po], possibly to support faster metabolic activities than
perennials and/or due to luxury consumption. Under P-deficient
conditions, annuals reduce P in their fractions to a greater extent than
perennials, possibly at the expense ofmaintainingmetabolic activities
(Tawaraya et al., 2018). However, this conclusion has to be made in
the context of the association of leaf [P]with other leaf traits (Lambers
& Poorter, 1992). As Nicol & Ryan (2021) observed, annual and
perennial pasture species exhibit higher leaf total [P] and [Pi] when
grown under heavily P-fertilised conditions than the values reported
for those species under low-P conditions (Fig. S3). In such
comparisons, the high leaf total [P] and [Pi] in both annuals and
short-lived perennials is likely due to the herbaceous nature and fast
growth rate of both plant types. Organic P fractions occur at higher
concentrations when plants are grown under P-sufficient conditions
than P-deficient conditions (Fig. 2c); some Po is hydrolysed as P
becomes limiting for growth, in particular that contained in
phospholipids (Tawaraya et al., 2018).

There are few data on P fractions in annuals in comparison with
perennials, and data include wild or crop species grown either in
pots or in controlled environments (Tables S1, S2). Therefore, the
rest of the discussion is based on data from perennials, and most of
which were growing in their natural habitats without fertiliser
application (Table S1).

Family

Leaf total [P] of perennial plant species representing different
families shows large variation (Fig. 3). Plant family represents
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only 30% of the variation in total [P] (R2 = 0.30; coefficient of
variance (CV) = 105%). Compared with total [P], [Pi] is more
conserved within a family, which represents 54% of the
variation (R2 = 0.54; CV = 86%). Moreover, the percentage of

[Pi] relative to leaf total [P] is even more conserved within a
family than either factor alone (R2 = 0.60; CV = 39%). Similar
patterns appear in studies where both [Pi] and metabolite [P]
were measured combined (Fig. S4).
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Fig. 4 Concentrations of metabolic (i.e. inorganic phosphate (Pi) + small metabolites containing phosphorus (metabolite-P)), phospholipids (lipid-P), nucleic
acid-P and residual-P in leaves or Pi and organic P (Po) concentrations (left column) and the percentage of each fraction relative to total leaf P (right column) of
coexisting families as reported in five studies (mean� SE). Different letters denote significant differences in proportion of leaf P in each fraction among families
within a given study (P < 0.05) according to the chi-square test. Source: studies summarised in Supporting Information Table S2. Data collected from co-
occurring species from multiple sites were averaged when producing bar charts using data from Yan et al. (2019), Mo et al. (2019), Tsujii et al. (2017) and
Ostertag (2010).
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Fig. 5 Concentrations of metabolic (i.e. inorganic phosphate (Pi) + small phosphorus (P)-containing metabolites), phospholipid (lipid-P), nucleic acid and
residual-P in leaves (left column) and the percentage of each fraction of total leaf P (right column) of co-occurring perennial plant species from three families as
reported by Tsujii et al. (2017) (mean� SE, n = 3). The soil soluble P concentrations, extracted with 0.03M NH4F/0.1M HCl solution, are 0.02, 0.12 and
0.19 gm�2 in the topsoil for low-, medium- and high-P sites, respectively. According to Takyu et al. (2002), these soil P concentrations are equivalent to 0.44,
2.32 and 3.31 g P kg�1 dry soil, respectively. Different letters denote significant differences in proportion of leaf P in each fraction among specieswithin a given
study (P < 0.05) according to the chi-square test.
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Among the families for which Pi data were available,
Proteaceae from severely P-impoverished habitats in Australia,
and Aquifoliaceae from nutrient-impoverished Hawaiian forests,
show the lowest leaf total [P] (0.34–0.38 mg P g�1 DW) and
[Pi] (0.10–0.12 mg P g�1 DW; Fig. 3). However, those families
exhibit Pi values that are 20–31% of the total [P], which is in
the range of that in other families (16–49%). Therefore, the
variability of P among families included in this study decreases
from leaf total [P] > [Pi] > percentage allocated to leaf Pi relative
to total leaf P. It is important to note that for some families,
only a limited number of samples (species) were available, and
thus the relative position of those families in Fig. 3 may vary as
more data become available.

Variation in leaf P allocation among coexisting taxa

To further our understanding of the role of region in influencing P
allocation, we selected studies comparing families with only
coexisting plant species and assessed whether the results on a global
scale are consistent in studies from different regions.

The mean leaf total [P] across families varies widely, from
0.25 mg P g�1 DW for Cunoniaceae to 3.1 for Araliaceae
(Fig. 4). The total [P] and [P] in the various leaf P fractions
differs significantly among co-occurring families (Fig. 4;
Table S5). For example, Ericaceae and Rosaceae exhibit a higher
total [P] and [P] in each fraction than co-occurring species from
other families in Alaskan tundra vegetation (Chapin III &
Shaver, 1988). Fabaceae, Verbenaceae and Magnoliaceae show
higher leaf total [P] and its fractions than co-occurring species in
a Mediterranean biodiversity hotspot in south-western Australia
(Yan et al., 2019), a tropical coastal ecosystem in Guangdong
province in China (Mo et al., 2019) and tropical forests in
Mount Kinabalu, Borneo (Tsujii et al., 2017), respectively.
Species in families with higher leaf total [P] tended to retain
most P in Pi and metabolite-P (Fig. 4; Table S5). Despite the
large variability in leaf total [P] and [P] in the various leaf P
fractions, the percentage of P allocated to those fractions is less
variable among the families tested. Myrtaceae sampled in four of
five studies show that the percentage of P allocated to nucleic
acids (29–32%) and lipids (19–24%) is a conserved trait in this
family.

We calculated the variability of each P fraction among the
families (Table S6). While the concentrations of Pi, metabolite-P
and residual-P fractions are highly variable among families, the
percentage of P allocated to nucleic acids and lipids is more
conserved (CV = 18 and 25%, respectively; Table S6). The
percentages of leaf P as nucleic acid-P and lipid-P across families
vary by 20–35% and 14–34%, respectively. Moreover, the
allocation of P to total Po is 25–55% to nucleic acids, 20–44% to
phospholipids and 6–35% to the residual-P fraction.Overall, these
results reveal a large variability in leaf total [P] and its fractions
among co-occurring families (Tables S5, S6), but the percentage of
P allocated to the P-containing organic fractions, particularly
nucleic acids and lipids, is less variable and hence more conserved.

So far, only one study tested whether co-occurring congeneric
species within a family have similarities of P allocation in sites with
different soil P availability; in this case, high, medium and low
availability (Tsujii et al., 2017). At the high-P site (Bray II topsoil
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Fig. 6 Concentrations of inorganic phosphate (Pi), small metabolites
containing P (metabolite-P), phospholipids (lipid-P), nucleic acid-P and
residual-P (a) and the percentage of each fraction relative to total leaf P (b) in
mature green leaves and senesced leaves of perennial plant species
(mean� SE, n = 82 and 35 for green and senesced leaves, respectively). Same
letterwithina leafP fraction is statistically similar (P > 0.05)according tothechi-
square test. Source: studies summarised in Supporting Information Table S2.

Table 1 Percentage of total variability of the concentration of leaf phosphorus (P) fractions and leaf total P explained by a four-way analysis of variance
(ANOVA)with the factors of region (Australia and New Zealand, East Asia, Europe andNorth America), plant life form (annuals, ferns, herbaceous perennials,
shrubs, trees and vines), family and species (family).

Source df Pi (%) Metabolite P (%) Lipid P (%) Nucleic acid P (%) Residual P Total-P (%)

Region 3 3.85 19.41 1.36 6.93 8.61 7.18
Plant life form 5 0.03 0.00 0.00 0.00 0.00 0.02
Family 34 30.22 29.94 56.28 63.73 66.17 48.19
Species (Family) 28 13.40 9.69 15.00 9.54 5.88 10.19
Error 241 52.50 40.96 27.36 19.80 19.34 34.42
R2 0.48 0.59 0.72 0.80 0.80 0.65
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P = 0.19 g m�2), two species from each of Fagaceae, Magnoliaceae
and Myrtaceae were present (Fig. 5). Lithocarpus lampadalius
(Gamble) A. Camus (Fagaceae) and Magnolia carsonii Dandy ex
Noot. (Magnoliaceae) have a higher metabolic [P] (i.e.
Pi +metabolite-P) than co-occurring species from the same family,
despite having similar lipid [P], nucleic acid [P] and residual [P]
(Fig. 5; Table S7). Syzygium cf. castaneum (Merr.) Merr. & L.M.
Perry. (Myrtaceae) exhibits higher concentrations of all P fractions
than its counterpart from the same family. Consistent with earlier
comments, species with higher leaf total [P] contain more P in Pi
andmetabolite-P fractions (Fig. 5; Table S7). At both themedium-
and low-P sites (Bray II topsoil P = 0.12 and 0.02 g m�2,
respectively), there are significant differences in leaf total [P] and its
fractions amongMyrtaceae (Fig. 5; Table S7). Based on the limited
data, we suggest that the leaf P allocation pattern of co-occurring
species within the same family is different and species-specific.
However, as more data from diverse environments and plant
functional types become available, generic conclusions should be
possible in regard to the concentration of P fractions of co-
occurring species of a family and species9 region interactions.
Moreover, as shown in Fig. 4 for co-occurring families, the
percentage of P allocated to each of P fractions is less variable for
congeneric species, despite a large variability in leaf total [P] and [P]
in the various leaf P fractions. Understanding the mechanism and
signification of this variation is important when screening varieties
with the aim of improving PUE in crops.

Plant traits

Changes in An and PPUE

Mass-based An is positively correlated with leaf total [P] (Veneklaas
et al., 2012). However, the relationship between An and leaf P
fractions has not beenwidely explored.Hidaka&Kitayama (2013)
measured leaf An of 10 tree species from a tropical montane
rainforest and found that An is positively correlated with leaf total
[P] and metabolic [P] (i.e. Pi +metabolite-P) across species.
Moreover, Hidaka & Kitayama (2011, 2013) noted a strong
correlation between metabolic [P] and nucleic acid [P]. Our
analysis across environments and families extends this relationship
more generally (r = 0.80; P < 0.001) (Fig. 1). Overall, tree species
on P-poor soils appear to function at low levels of bothmetabolic-P
and nucleic acid-P.

Severalmechanisms allow ahighPPUE inplants: (1) preferential
allocation of P among leaf P fractions, for example greater
allocation to metabolite-P; (2) preferential allocation of P among
leaf tissues, for example greater P allocation to photosynthetically
active mesophyll cells; (3) the net effect of a lower concentration of
each leaf P fraction; and (4) various combinations of the above
possibilities. In all these scenarios, the relative reduction in An is
smaller than the reduction in leaf [P] under low soil P availability
(Lambers et al., 2012; Sulpice et al., 2014;Mo et al., 2019). The net
outcome, then, is a higher PPUE.

Supporting the hypothesis that a high PPUE can arise from a
more efficient distribution of P among leaf P fractions, tree species
from tropical montane rainforests with high PPUE had a relatively

greater investment of P in P-containingmetabolites and a relatively
smaller investment in phospholipids (i.e. higher metabolic [P] to
lipid [P] ratio) than those with lower PPUE (Hidaka &
Kitayama, 2013). In another example, Proteaceae that grow on
severely P-impoverished soils function at very low leaf rRNA levels
(i.e. low nucleic acid-P), but maintain fast An (Sulpice et al., 2014),
which is a main reason for their exceptionally high PPUE (Denton
et al., 2007; Lambers et al., 2012; Sulpice et al., 2014). With this
supporting evidence from a limited number of species, the
hypothesis that greater allocation of P to P-containing metabolites
helpsmaintainAn nowneeds to be tested for awider range of species
or genotypes within a species.

Eudicots from severely P-impoverished environments inAustralia,
South Africa and Brazil preferentially allocate P to their photosyn-
thetically active mesophyll cells (Lambers et al., 2015; Hayes
et al., 2018;GuilhermePereira et al., 2019; Ye et al., 2021).However,
eudicots inhabiting other environments, such as P-rich soils, either
preferentially allocate P to epidermal cells (Conn&Gilliham, 2010;
Hayes et al., 2018; Guilherme Pereira et al., 2019) or exhibit a lack of
preferential allocation, for example the P-hyperaccumulatingPtilotus
exaltatus (Amaranthaceae) (Ye et al., 2021). Preferential allocation of
P to mesophyll cells allows plants to efficiently use P for photosyn-
thesis, which occurs in mesophyll cells, but not in epidermal cells
(with the exception of guard cells). Thus, preferential P allocation
contributes to a high PPUE.

Species of Banksia and Hakea (Proteaceae) substitute phospho-
lipids with lipids that do not contain P, such as galactolipids and
sulfolipids, during leaf development, which contributes to their
high PPUE even under low leaf total [P] (Lambers et al., 2012;
Kuppusamy et al., 2014). Phosphorus substitution in lipids is
indicated by gene expression profiling during grain filling of rice
(Oryza sativa L.) at low-P availability (Jeong et al., 2017; Hayes
et al., 2022). Therefore, plants that adjust and/or substitute leaf P
fractions, and preferentially allocate P to photosynthetic tissues,
exhibit a high PPUE in low-P soils.

Resorption of P fractions during leaf senescence

Plants resorb P from senescing leaves before abscission. The
amount of P resorbed largely depends on soil P status and species.
Phosphorus-resorption efficiency (PRE) is defined as the percent-
age of P resorbed from senescing leaves before abscission relative to
the amount in mature green leaves (Killingbeck, 1996).
Phosphorus-resorption efficiency increases with decreasing soil P
availability (Hidaka & Kitayama, 2011; Reed et al., 2012; Hayes
et al., 2014; Suriyagoda et al., 2017; Guilherme Pereira et al.,
2019). The global average of PRE is c. 50–60% in evergreen
angiosperms (Yuan & Chen, 2009; Vergutz et al., 2012), while
PRE can exceed 80% in some species native to very low-P habitats
(Denton et al., 2007; Hidaka & Kitayama, 2011; Lambers et al.,
2015; Suriyagoda et al., 2017; Tsujii et al., 2017; Hayes et al.,
2018). However, so far, little is known about the biochemical
mechanisms underlying this greater PRE and the types of P
fractions resorbed.

Leaf P fractions differ in the extent to which they can be
remobilised, for example soluble P forms such as Pi can easily be
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resorbed, before the degradation of Po (Ostertag, 2010; Hidaka &
Kitayama, 2011). Mao et al. (2015) found that PRE increases with
an increasing ratio of Pi to Po in mature leaves. Phosphorus-
resorption efficiency also varies among tissues and families, for
example Templetonia retusa (Vent.) R.Br. (Fabaceae) preferentially
allocates P to its upper epidermis and shows a low PRE (Guilherme
Pereira et al., 2018), while Proteaceae that preferentially allocate P
to mesophyll cells exhibit higher PRE (Hayes et al., 2018).
However, it cannot be generalised that PRE is high due to P
allocation to mesophyll cells, as Hordeum vulgare L. (Poaceae)
shows low PRE despite allocating P to its mesophyll (Dietz
et al., 1992). It is clear that resorption of P from different fractions
and from different leaf tissues and families needs to be studied
further.

Phosphorus-resorption efficiency often exceeds the proportion
of soluble P, especially for plants grown in low-P soils (Denton
et al., 2007; Hidaka & Kitayama, 2011; Tsujii et al., 2017). For
example, Tsujii et al. (2017) tested the PRE for metabolic, lipid,
nucleic acid and residual-P fractions of 14 species from eight
families growing at two sites differing in soil P availability. At the
higher-P site, average PRE for metabolic, lipid, nucleic acid and
residual-P pools was 52%, 65%, 56% and 32%, respectively, while
at the lower-P site, average PRE was 74%, 86%, 79% and 70%,
respectively. Similarly, in Eriophorum vaginatum L. (Cyperaceae)
inAlaskan tussock tundra, all Po fractions in leaf blades decreased to
a similar extent during senescence, showing that retranslocation of
P from leaves was independent of the nature of different P fractions
(Chapin III et al., 1986). Therefore, the amount of P resorbed
before leaf abscission in perennials exceeds that of Pi in mature
leaves, confirming those species that achieve a high PRE do so by
remobilising P from Po fractions in addition to Pi. This conclusion
is further supported by the observation that genes related to the
remobilisation of Pi are upregulated before the breakdown of Po
fractions in rice leaves (Jeong et al., 2017). These observations
suggest that species inhabiting P-poor environments have higher
PRE due to an ability to degrade a greater proportion of Po and/or a
greater capacity to transport Pi from the Po that is degraded.

Nucleic acid-P and lipid-P are converted to metabolite-P and
then to Pi before being translocated from leaves and resorbed. Data
from mature green and senesced leaves of over 25 perennial plant
species fromAlaska, Australia and Indonesia show that, on average,
74% of nucleic acid-P, 80% of lipid-P, 47% of residual-P and 44%
of Pi are resorbed (Fig. 6; Table S2). Despite the Pi fraction being
expected to be preferentially resorbed due to its higher mobility, its
percentage resorption is lower than that of the nucleic acid and
lipid-P fractions (Fig. 6). Moreover, the metabolite-P fraction in
senesced leaves increased. This does not mean that Pi and
metabolite-P are resorbed less from senescing tissues. The amount
of Pi andmetabolite-P can increase during the degradation of Po in
senescent tissues (Chapin III & Kedrowski, 1983; Tsujii
et al., 2017). Therefore, such transient degradation products likely
result in lower net resorption of Pi and increased metabolite [P].
Trees on P-rich soils may allocate excess P to soluble P fractions
(Fig. 2) and to epidermal cells, and this excess P may remain in
senesced leaves (Guilherme Pereira et al., 2019). In general, P
resorption from the residual fraction is smaller than that from the

nucleic acid and lipid fractions (Fig. 6). The residual-P fraction
most likely contains phosphorylated proteins and is retained in
senesced leaves more than any other P fraction. Nevertheless,
species with greater PRE demonstrate a high percentage resorption
from this fraction, similar in magnitude to that of the other
fractions (Tsujii et al., 2017). Therefore, the percentage P resorbed
from residual-P is dependent on soil P availability.

According to Tsujii et al. (2017), variation in PRE in perennial
tree species fromMount Kinabalu, Borneo is accounted for by both
genus (i.e. phylogeny) and site (i.e. soil P availability). The variation
in P resorption from each P fraction is in part due to unique
contributions of genus (25–43%) and site (20–37%), and the
interaction of genus and site (6–24%). Overall, available results
indicate that plants selectively degrade organic compounds
depending on soil P availability, making this a key mechanism
underlying variation in PRE. However, more data across plant
functional types with different PRE are needed to gain a better
understanding of the degradation of leaf P fractions under different
conditions of P availability as differential resorption of particular P
fractions is not known. The variation of P resorption fromdifferent
leaf tissues such as mesophyll cells and epidermal cells also needs to
be further explored to broaden our understanding with more plant
functional types, species and a broader range of soil P availability.

Seasonal variation and variation during leaf development

Chapin III & Kedrowski (1983) studied seasonal changes in
P-containing chemical fractions in the leaves of deciduous (larch –
Larix laricina (Du Roi) K. Koch, birch – Betula papyrifera
Marshall and alder – Alnus crispa Ehrh. K.Koch) and evergreen
(black spruce – Picea mariana Mill.) Alaskan tree species. They
found no important differences in patterns of P distribution
among the major chemical fractions in the leaves of deciduous
trees. In deciduous species, concentrations of all P fractions are
highest in mature green leaves and decline throughout the season,
first as they are diluted by increasing leaf biomass, and later as Po
fractions are hydrolysed and Pi retranslocated out of mature
leaves. The quantities of nucleic acids and phospholipids
hydrolysed in autumn are 40–47% and 26–38%, respectively,
of the total P retranslocated from leaves of deciduous species
before abscission. In buds and stems, P found during winter
primarily comprises metabolite-P, phospholipid-P and nucleic
acid-P, and this Po pool is converted into Pi in spring. In the
evergreen species, P is present in the same types of compounds as
in deciduous species, but the P in leaves involves no winter
translocation to stems as in deciduous species. Similarly, Hellin
& Alcaraz (1980) studied the changes in leaf total [P] and its
fractions in lemon (Citrus limon L.; Rutaceae) leaves over the
course of 1 yr and found that leaf total P, Pi, lipid-P and
metabolite-P concentrations decline during spring, and then
increase from late summer into autumn and winter. However,
nucleic acid [P] does not show remarkable differences among
seasons. Chapin III et al. (1986) observed similar results in
E. vaginatum (Cyperaceae) in an Alaskan tussock tundra. The
declined concentrations of leaf P fractions in spring would be due
to remobilisation of P from existing leaves to drive new leaf
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growth, and an increase in the lipid-P fraction from autumn to
winter reflects its role in cold hardiness (Chapin III et al., 1986).

Nucleic acid [P] is generally high in young actively growing
leaves and stems, where rates of protein synthesis are fast
(Brady, 1973). Phospholipids and metabolite-P (possibly phytate)
are apparently the overwintering forms of P, as they increase in
autumn and decline in spring. Similar changes in lipid-P occur in
older stems and roots (Siminovitch et al., 1968).Overall, perennials
exhibit changing P forms and locations of storage depending on
environment. This seasonal variation in P fractions must be
considered when collecting leaf samples for P fraction studies and
making comparisons among plant life forms (e.g. annuals vs
perennials or deciduous vs evergreen).

Proteaceae species from severely P-impoverished habitats spread
investment of P in rRNA during leaf development (Sulpice
et al., 2014). Compared with Arabidopsis thaliana L., immature
leaves of Proteaceae contain low levels of rRNA, especially plastidic
rRNA. Accordingly, Proteaceae show a delayed development of
their photosynthetic apparatus with young leaves having low levels
of Rubisco and chlorophyll (‘delayed greening’). Sulpice
et al. (2014) showed that low ribosome abundance contributes to
the high PPUE of Proteaceae by investing less P in ribosomes and
maintaining low abundance of plastidic ribosomes in young leaves
and of cytosolic ribosomes in mature leaves, thus spreading
investment of P in rRNA.

Apart from seasonal and leaf development-dependent variation
in leaf P fractions, diurnal variation in leaf P fractions, particularly
in photosynthetically active leaves, can also be expected, because An
is positively correlated with metabolic [P] and nucleic acid [P]
(Hidaka & Kitayama, 2011, 2013). Both leaf total [P] and [Pi] in
cotton (Gossypium hirsutum L.) and white clover (Trifolium repens
L.) increase frommorning to evening and decline during the night
(Phillis &Mason, 1942; Hart & Jessop, 1984). It is, however, not
yet clear whether the reduction in [Pi] is due to the formation of
other P-containing compounds or export of Pi from the leaves via
the phloem, or both.

Phytate-P in leaves

One of the adaptations to regulate [Pi] in the cytoplasm is to
synthesise myo-inositol hexakisphosphate, phytate (Strother,
1980). Phytate is a small P-rich compound that functions as the
major storage compound (up to 90%) of P in seeds (Raboy, 2003).
It accumulates during seed development and is enzymatically
hydrolysed to release Pi during germination. Phytate also accumu-
lates in other plant organs, such as pollen, roots, tubers, stems and
leaves (Reddy et al., 1982; Alkarawi & Zotz, 2014a,b; Takagi
et al., 2020) where it also serves to store P (Raboy, 2003).

Alkarawi & Zotz (2014a) reviewed the literature for phytate in
green leaves. They found that phytate-P of 35 plant species
accounts for 1–27% of total P (average, 8%; median, 5%). These
values are much lower than those for seeds (Madsen & Brinch-
Pedersen, 2020). At low concentrations, phytic acid is involved in
cellular signal transduction in eukaryotic cells (Kumar et al., 2021).
However, the above concentrations are too high to fully account for
a signalling function. Phytate occurs in leaves in many plant

families (Table S8), and its concentration ranges from0.2%of total
P in Poaceae to 14.2% in Gnetaceae. Despite this high concen-
tration of phytate in leaves of certain species, its role is largely
unknown. Recently, Takagi et al. (2020) showed that an excessive
Pi supply increases the cytosolic sugar phosphate concentration and
activates phytate synthesis, decreasing leaf An and disrupting the
reactive oxygen species defence system.More studies are required to
assess the effect of phytate on photosynthesis in other species.

Although phytate concentrations increase with increasing leaf
total [P], there is a negative correlation between the proportion of
total P in the form of phytate and leaf total [P] inManihot esculenta
Crantz (Euphorbiaceae) and Taraxacum officinale (L.) Weber ex
F.H.Wigg (Asteraceae) (Alkarawi & Zotz, 2014a,b). A positive
correlation can be explained by the fact that phytate synthesis
usually starts when the supply of P exceeds the requirement of basic
plant metabolism when no other sinks for P exist (Bieleski, 1973).
We do not know if the trend towards lower proportions of phytate-
P with increasing leaf total [P] is a general phenomenon, and this
deserves further studies.

Conclusions

While the concentrations of leaf total [P] and its fractions are
highly variable among families and species, the proportion of
P allocated to each fraction is less variable, especially for
nucleic acid-P and lipid-P. Moreover, species-specific P
allocation patterns are evident (e.g. P allocation to specific
leaf tissues and changes during leaf development). Despite
these variations, there are significant positive correlations in
concentrations among the five leaf P fractions. The variability
of concentration of leaf P fractions decreases in the order of
families > species(family) > region > plant life form. When
annual and perennial plant species are compared, the
percentage of P allocated to the leaf P fractions is similar,
despite the absolute concentrations being higher in annuals.
All P fractions can be resorbed from senescing leaves,
including residual-P. Temporal (i.e. seasonal and diurnal)
fluctuations of leaf P fractions may allow leaves to respond to
environmental changes.

When expressed on aDWbasis, leaf [P] is affected by leafDMC.
Most studies do not report this trait, but it may have affected the
comparisons made in this paper among species and families. This
highlights the importance of presenting leaf [P] in relation to leaf
DW, leaf area, leaf fresh weight (FW), leaf [N] or together with
specific leaf area and leaf DMC (Sulpice et al., 2014).

Whereas P fraction data are relatively abundant for perennial
plant species, there is limited information on annuals and crop
species. Therefore, comparisons lack the robustness required to
offer a clear scheme of differences in P allocation among plant
functional types. Moreover, changes in leaf P fractions during leaf
development and seasonal and diurnal variation need to be further
explored. As leaf morphological and physiological adaptations
enhancing PRE, PUE and PPUE have been explored widely,
genetic analyses are needed to identify genes responsible for such
adaptations, both in annuals and in perennials. This would pave the
way towards more P-efficient crops.
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